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Weakly nonlinear theory is used to study the porous-medium analogue of the 
classical Rayleigh-Be'nard problem, i.e. Lapwood convection in a saturated porous 
layer heated from below. Two particular aspects of the problem are focused upon : (i) 
the effect of thermal imperfections on the stability characteristics of steady rolls near 
onset; and (ii) the evolution of unstable rolls. 

For Rayleigh-Be'nard convection i t  is well known (see Busse and co-workers 1974, 
1979, 1986) that the stability of steady two-dimensional rolls near onset is limited by 
the presence of cross-roll, zigzag and sideband disturbances ; this is shown to be true 
also in Lapwood convection. We further determine the modifications to the stability 
boundaries when small-amplitude imperfections in the boundary temperatures are 
present. In practice imperfections would usually consist of broadband thermal noise, 
but it is the Fourier component with wavenumber close to the critical wavenumber 
for the perfect problem (i.e. in the absence of imperfections) which, when present, has 
the greatest effect due to resonant forcing. This particular case is the sole concern of 
the present paper ; other resonances are considered in a complementary study (Rees 
& Riley 1989). 

For the case when the modulations on the upper and lower boundaries are in phase, 
asymptotic analysis and a spectral method are used to determine the stability of roll 
solutions and to calculate the evolution of the unstable flows. It is shown that steady 
rolls with spatially deformed axes or spatially varying wavenumbers evolve. The 
evolution of the flow that is unstable to sideband disturbances is also calculated when 
the modulations are n out of phase. Again rolls with a spatially varying wavenumber 
result. 

1. Introduction 
The study of the effects of small imperfections on classical flows such as BBnard 

convection has received much attention in the last decade or so (see, for example, 
Kelly & Pal 1976, 1978; Pal & Kelly 1978, 1979; Vozovoi & Nepomnyaschii 1974; 
Walton 1982; Eagles 1980; Rees & Riley 1986; Hall & Walton 1977, 1979; Daniels 
1982; and Zaleski 1984). These analyses have, in part, been motivated by a desire to 
model experimental imperfections such as thermal noise, and boundary misalignment 
or roughness. Additionally, the results have been of considerable interest in the 
context of bifurcation theory and the study of nonlinear systems in general. In this 
context we may view the present study as one of determining the unfolding of the 
bifurcation structure arising in a problem possessing Z, reflectional symmetry 
(updown symmetry) and a continuous transformation group (arbitrary shifts in the 
horizontal direction). 
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Recently, in a series of experiments, Lowe, Gollub and co-workers (Lowe, Gollub 
& Lubensky 1983; Lowe & Gollub 1985a, b ;  Lowe, Albert & Gollub 1986) have found 
a number of novel cellular patterns in thin layers of nematic liquid crystal subjected 
to a spatially periodic potential difference. Their striking structures may be related 
to the effects of competing frequencies or periodicit,ies, namely, those of the forcing 
and of the usual BBnard thermo-convective instability. It is important that we have 
a theoretical framework within which we can explain the complex spatial patterns 
resulting from the interplay between incommensurate lengthscales. 

In  this paper we report the findings of a study into the effects of boundary thermal 
noise on convection in an infinite porous layer heated from below and cooled from 
above. The results also apply qualitatively to the corresponding Boussinesq-fluid 
problem (Wynne 1987). Now, in practice, imperfections often consist of two- 
dimensional broadband thermal noise containing many different Fourier com- 
ponents. In  this study, however, we assume, for simplicity, that the thermal noise a t  
both boundaries is steady and varies periodically in one spatial direction only. Under 
these assumptions Rees & Riley (1989) find .that the Fourier component with 
wavenumber k, close to the critical wavenumber, k,, of the perfect problem (i.e. 
when imperfections are absent) has the greatest effect when the Rayleigh number is 
near Ra,, the critical value for the perfect problem. We focus on the effects of this 
particular component ; when it is absent other resonances become important and this 
is taken up in a complementary study (Rees & Riley 1989). The k,-mode modulation 
at the boundaries may be factored into in-phase and n-out-of-phase components, and 
the effect of the imperfections depends crucially on this factorization. If there is in- 
phase (or sinuous) thermal modulation a t  the boundaries then its effects dominate 
those caused by the other component and all other Fourier modes, a t  least to the 
order considered here. When the in-phase component is absent, the varicose, or n- 
out-of-phase, component must be considered in isolation as varicose components of 
other wavelengths can dominate. We shall concentrate upon the k,-mode 
imperfection : the in-phase case is studied in $5 3 , 4  and 5, whilst the out-of-phase case 
is studied in $6. 

A t  small non-zero values of the Rayleigh number, Ra, a unique two-dimensional 
cellular convection of wavenumber k, and amplitude O(s)  exists, where E is a measure 
of the small-amplitude thermal imperfection. In  the sinuous case, as the Rayleigh 
number approaches Ra,, there is a smooth transition to a finite-amplitude convective 
regime, which is also two-dimensional and has wavenumber k,. Our aims are to 
derive conditions for the stability of this basic flow, and, when unstable, to find the 
ultimate steady solutions that evolve. These aims are most easily achieved by using 
the evolution equations which govern the amplitude of the flow. Rees & Riley (1989) 
show that to balance the effects of a detuned boundary forcing and the thermo- 
convective instability in the evolution equations the scalings k, - k, = d K  and 
Ra-Ra, = E ~ R  are needed. Three different instability mechanisms, namely, the 
cross-roll, zigzag and sideband instabilities (see Busse & Whitehead 1974; Busse & 
Clever 1979; Bolton, Busse & Clever 1986), are analysed separately in $53, 4 and 5, 
respectively. In practice, all three mechanisms may be present and interact; we 
therefore consider this work to be a first step in understanding the evolution of these 
instabilities in the presence of non-uniformities. 

When the basic roll is unstable to the cross-roll instability, the flow evolves 
monotonically to a new state. The original roll decays in amplitude and the 
disturbances grow to produce a mixed-mode convection pattern reminiscent of the 
bimodal convection pattern found by Busse & Whitehead (1971). It is found that, 
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owing to the presence of the imperfection, there is a continuous finite band of 
wavenumbers for which the basic roll is no longer unstable to the cross-roll 
disturbance. Thus Straus’ stability envelope (Straus 1974) is modified near its lower 
vertex and the size of the stable region is increased. The bifurcation to the mixed 
mode may be either supercritical or subcritical ; for certain values of k,, therefore, it 
is possible to  have hysteresis between the mixed mode and the original roll as R a  
varies. 

When the roll becomes unstable to  the zigzag instability, a new flow arises a t  a 
supercritical bifurcation. It is found that stable rolls exist with wavenumber k, less 
than k,, in contrast to the perfect case. Thus again the imperfections serve to 
stabilize the basic roll. Unlike the evolution of the cross-roll instability which could 
be followed analytically, here we have to resort to numerical methods. By using a 
simple Galerkin scheme, the amplitude equation is transformed from a partial 
differential equation to an infinite set of coupled nonlinear ordinary differential 
equations in time. This is truncated and solved numerically using a standard library 
routine. It is found that there are two distinct steady solutions that can evolve : both 
have spatially deformed axes, but differ in their mean alignments. In  general, when 
(Ra,k,) lies close to the marginal curve the mean alignment is along the basic roll 
axis, but when (Ra,k,) is far from the curve it is a t  an angle that is O(d) to this. 
Under certain conditions i t  is possible for both to  be stable solutions, the one that is 
realized depends on the initial conditions, and once more, hysteresis is possible. 

When the layer is sufficiently restricted in the spanwise direction neither of the 
above instabilities can be accommodated within the layer. In  this case the only 
instability to  which the basic roll can be subject is the sideband instability. This 
instability is also important when considering the associated problem of the stability 
of convection in a thermally modulated, shallow Hele-Shaw cell, since the flow is 
essentially two-dimensional and identical non-dimensional equations hold. Again, 
the stability boundary is modified from that for the perfect problem, and it is shown 
analytically that the bifurcations corresponding to  points on the marginal stability 
curve may be either supercritical or subcritical depending on the precise position on 
the curve. The evolution of the sideband disturbances is followed using a similar 
method to that used for the zigzag instability. I n  this case we obtain a unique 
evolved state: a roll, the wavenumber of which varies in space. 

When the thermal modulations a t  the boundaries are x out of phase then there is 
no longer a smooth transition to finite-amplitude convection near Ra,, rather the 
weak subcritical flow loses its stability and bifurcates to  finite-amplitude convective 
motion. Thus in this case the imperfection is ‘weak’: the bifurcation is not unfolded 
as the imperfection does not remove the symmetry broken at the bifurcation point. 
In general, the resultant motion is three-dimensional with the mode of lowest critical 
Rayleigh number (O(E) below Ra,) consisting of rectangular cells. If, however, the 
layer is sufficiently restricted in the spanwise direction, then this pattern cannot fit 
into the layer. We assume this restriction holds, or we notionally consider Hele-Shaw 
motions, and focus on two-dimensional flows. 

The appropriate scalings for this case are k,-k,  = EK and Ra-  Ra,  = e2R (Rees 
& Riley 1989). We find that there are two different roll solutions that can evolve : one 
corresponds to a single roll with wavenumber k, and occurs when K is small, the 
other is a flow with a spatially varying wavenumber and occurs for larger values of 
K .  The latter flow arises either from the instability of the former or as a result of the 
evolution of a pair of small-amplitude disturbances with wavenumbers k, & EL. 
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2. Formulation of the problem and derivation of the amplitude equations 
We consider a horizontal porous layer of infinite extent saturated with a 

Boussinesq fluid and heated from below. The flow configuration and coordinate 
system are sketched in figure 1. On assuming that the Prandtl-Darcy number is 
large, and that the fluid and the matrix are in local thermal equilibrium, convective 
flows are governed by the non-dimensional equations (see Rees & Riley 1986): 

v - q  = 0 ,  (2.1) 

8 , + ( q . V ) 8  = V28, (2 .2 )  

4 = -Vp+Ra&'& (2.3) 

where 2 is the upward unit normal, p the pressure, 8 the temperature and q the Darcy 
velocity vector. Here the variables have been non-dimensionalized with respect to 
length, velocity, pressure, temperature and time scales given by d,  h,/(pf  cf d ) ,  
vh,/(K*c,), A T ,  and pm G, d2/h,, respectively, where A,, p,, G, are the effective 
thermal conductivity, density and specific heat of the saturated medium, and v and 
cf are the kinematic viscosity and specific heat of the saturating fluid, which has 
reference density pf. The Rayleigh number is given by Ra = PgK* ATdp,c,/vh,, 
where p is the coefficient of cubical expansion of the saturating fluid, g the 
acceleration due to gravity, K* the permeability, AT half the mean temperature drop 
across the layer, and d the half-width of the layer. The elimination of q from these 
equations yields 

V2p = Rat?,, 

V28 = R ~ 8 8 , - V p * V 8 + 8 , .  (2 .5)  

We assume that the boundary temperatures have small-amplitude sinusoidal 
variations about their mean values. We consider variations that are either sinuous 
(antisymmetric) or varicose (symmetric) with common wavenumber k, close to k,. 
Thus the non-dimensional boundary conditions on z = 5 1 are 

$ = T 1 + g ( e i * w s  + e--ikws ) (sinuous), (2.6) 

8 = T 1 +&(eikws + e-ikwz) (varicose), (2.7) 

p ,  = Ra0, (2.8) 

where E 4 1. We further assume there is no net horizontal volumetric flux. 
When the Rayleigh number is sufficiently below Ra, the fluid motion is driven 

solely by the boundary thermal non-uniformities, and is therefore two-dimensional. 
This we term the quasi-cond,uction regime, full details of which are given in Rees & 
Riley (1989). In this paper we employ weakly nonlinear theory to study the effects 
of the boundary imperfections when Ra is close to Ra, and k, - k, ; Rees & Riley 
(1989) consider the complementary case k, + k,. 

In  the sinuous case, the appropriate convective scale is O ( E ~ )  (cf. Rees & Riley 1986, 
1989; Tavantzis, Reiss & Matkowsky 1978; and Kelly & Pal 1978), and we expand 
the solutions to (2.4), (2.5) in powers of &: 

n-0 

where the conduction solution is 

(Po, do, R,) = ( - ~ R u ,  2, -2, Ru,). (2.10) 
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z = - 1  0 = 1 +ECOS(k&) 

zkx 
FIQURE 1.  A sketch of the flow configuration and coordinate system. 

For longitudinal rolls, the first-order eigensolution is taken to be 

where X = &x, Y = &, 7 = @t, and the overbar denotes complex conjugation. After 
setting k, = k,+&K in order to investigate the effects of small detunings of the 
boundary wavenumber from k,, the solvability condition a t  O(E)  yields a 
Landau-Ginzburg equation governing the amplitude A : 

A,  = RA+ 2---- A-ktA2A-4ikceiKX, [ :,:y (2.12) 

where R = R, and R, = 0. This equation may be made consistent with the notation 
of Rees & Riley (1986) by introduciq the substitutions A = -i2iA", X = 2-iX+, 
Y = 2-)Y+, R = 2gR#, K = 2iK", 7 = 2-37', which yield, on omitting the superscripts, 

A,  = RA+ 2---- A-k:A2K+2kceiKX [ A ;,:y (2.13) 

In $3 the interaction of longitudinal and oblique rolls is considered. For this case the 
first-order eigensolution is taken to be 

2k, sin (k, z )  c:) = ~i[(A(X,~)e~~~~-c.c.)+(B(X~,~)e~~~~~-c.c.)] 

where xb = xcosQ,- ysin@, and X ,  = &x,. At O ( F )  the application of solvability 
conditions yields a pair of amplitude equations for the amplitudes A and B :  

A, = RA+4A,,-k~A(IA12+RIB12)+2k,eiKX, (2.15a) 

B, = RB+4Bxbx,-kk4,B(IA12+RIB12), (2.15 b)  

where we have again omitted the subscripts. Here 0 is a function of @, the O( 1) angle 
between the roll axes, and is given by 

70 + 28 C O S ~  Q, - 2 C O S ~  @ 
49 - 2 cos2 @ i- coS4 Q, 

R(@) = . (2.16) 
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Q(@) attains a maximum value of 2 at CD = 0 (parallel rolls) and a minimum value 
of 10/7 when q5 = 

In  the varicose case, the appropriate roll-amplitude scale is O(e) (Rees & Riley 
1986, 1989), and we expand the solutions in powers of c :  

(perpendicular rolls). 

(2.17) 

where the conduction solution is again given by (2.10). The first-order eigensolution 
is again taken to  be (2.11) but now X = EX and 7 = g2t. In  this case we consider only 
the two-dimensional stability of the longitudinal roll and consider A to be 
independent of Y .  After setting k, = k , + c K ,  the solvability condition a t  O(c3) 
yields 

A, = (R-I , )  A +I,Ae2iKX +4A,, - k: A2K, (2.18) 

where I ,  = - 3.80429 and I ,  = 0.957 73. 

3. The cross-roll instability for the sinuous configuration 

dimensional roll cells is given by 
From (2.13) the equation governing the amplitude of weakly nonlinear two- 

A,  = RA + 4A,, - k; A2K+ 2k, eiKX. (3.1) 

It may be noted that the form of this equation is identical in structure to  that 
proposed recently by Coullet (1987). The most trivial steady solution is given by the 
' phase-winding ' solution 

A = A,eiKX, (3.2) 

where A ,  is real and satisfies the equation 

( R - 4 K 2 )  A, - kt A: + 2k, = 0. (3.3) 

When R > 3kE + 4K2 there are three solution branches, of which the disconnected 
secondary branches are both unstable in a horizontally unbounded layer. 

The stability of the roll defined by (3.2) to  a disturbance in the form of a roll 
aligned a t  an angle CD can be found by considering the equation for the amplitude, 
B, of the second roll, (2.15b). On linearizing (2.15b) with respect to  B, where A is 
given by (3.2), setting B = exp (h7+ iLX,) and maximizing the growth rate with 
respect to L and 0, it is found that the most unstable mode of this form has 
wavenumber k,, corresponding to L = 0, and is perpendicular to  the basic roll. The 
marginal stability curve is given by 

Y K 2  = R,, + k320/3) (10/7);R& (3.4) 

which is labelled ( a )  in figure 2. A curve of this form has been presented by Vozovoi 
& Nepomnyaschii (1974) for the corresponding BBnard problem. It is pertinent to  
note that as R,, increases, the second term on the right-hand side of (3.4) tends 
to zero and we recover the stability curve for the Lapwood (1948) problem, 
R,, = YK'. 

The evolution of this instability has been analysed by Rees 81, Riley (1986) for the 
related problem of undulating isothermal boundaries, and the details are therefore 
omitted here. To summarize: there are two stable solutions, namely, the basic roll 
and a mixed mode, which is a linear superposition of a weakened basic roll and the 
fully evolved cross-roll disturbance. The results are represented in the form of 
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FIGURE 2. Marginal stability curves for the (a) cross-roll, ( b )  zigzag, and (G) sideband instabilities. 
-, with thermal noise; ----, without thermal noise; ----, marginal stability curve for the 
onset of Lapwood convection. 

bifurcation diagrams in figure 3. For large detuning (IKl large), there are two 
symmetry-breaking bifurcations off the pure A-mode solution branch, with the basic 
roll unstable over a finite continuous range of Rayleigh number, (a).  As the detuning 
decreases the leading branches develop quartic contact and then the bifurcation goes 
subcritical, (b). The two bifurcation points eventually become coincident, (c), and the 
mixed-mode branches then disconnect in the opposite sense. This process leaves the 
pure A-mode completely stable to cross-roll disturbances, and each of the 
disconnected mixed-mode solution branches have a stable and an unstable branch, 
(d ) .  The critical values of K at which these two events occur are given in Rees & Riley 
(1986). 

4. The zigzag instability for the sinuous configuration 
The linear stability of the basic roll to zigzag disturbances may be considered (cf. 

Newel1 & Whitehead 1969) by substituting A = (A,+a)exp(iKX) in (2.13) and 
linearizing with respect to a. Setting 

) eA7, (4.1) a = ei(LX+MY) + e-i(LX+MY) 

and maximizing h with respect to L and M yields the three relative maxima: (i) 
L = M = 0 which leads to the result of $3 that the secondary branches of the basic 
roll solution are unstable: (ii) M = 0 and L2 = K2-k:Ai/64K2 which yields the 
sideband instability to be considered in $ 5 ;  and (iii) L = 0 and M 2  = -2k ,K,  the 
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FIGURE 3(a ,  b ) .  For caption see facing page. 

zigzag instability which exists when K is negative, i.e. for rolls with lengthscale larger 
than the critical Lapwood roll. It is easily shown that the marginal stability curve 
for zigzag disturbances is given by 

R, = ik: KP4, K < 0, (4.2) 

which is labelled ( b )  in figure 2 .  Roll solutions to the left of this curve are unstable 
and it is interesting to note that the unstable mode has the form a1 = -EP1 
corresponding to the sinuous zigzag instability (cf. Joseph 1976). The corresponding 
curve for the Be'nard problem is again given in Vozovoi & Nepomnyaschii (1974). 

In order to make analytical progress in considering the evolution of the unstable 
flow, weakly nonlinear theory is used. Assuming that ( R ,  K )  is close to the neutral 
curve, A and R are expanded as follows: 

R = R,(K)+PR,+ ..., 
A = (A,,+PA,+P2A2+ ...) eiKX, 

( 4 . 3 ~ )  

(4 .3b)  
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FIQURE 3. Sketches of the bifurcation diagrams for the cross-roll instability for decreasing values 
of IKI. The axes labelled A and B represent the modal amplitudes as in (3.4). Solid lines represent 
stable modes, and dashed lines unstable modes. 

where /3 % I ,  RJK)  lies on the neutral curve, A,, is given by (3.3), and 

A ,  = ye'MY-ye-iMY, (4.4) 

where y = y(7*), r* = ,Pr is a slow timescale, and M = ( -  2k, K) i .  At O($),  a solution 
exists only if 

R2 Y 16K12 + 36K6k! + ki2 
576K12 + 80K"kE + ka2 (4.5) 

which implies that the bifurcation is supercritical at all points on the curve. 
At points further away from the neutral curve it becomes necessary to solve the 

fully nonlinear equation. To effect the solution we use a Galerkin method and expand 
the amplitude as follows: 

N 
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where N is the truncation level of the series. It is important to note that we have 
assumed that the wavenumber modulation in the X-direction is due solely to the 
boundary forcing : this corresponds to suppressing the sideband instability. The 
coefficients B, satisfy 

- (B, )  d = [ R - ( 2 K + - ) ] B , - ~ ~ C , + 2 k ~ ~ , . .  n2M2 n = - N ,  . . . , N ,  (4.7) 

dr kc 

where a,, = 1 if n = 0 and is zero otherwise, and 

2N N 

with B, = 0 for Iq( > N .  Equations (4.7) are readily solved using the NAG library 
initial-value ordinary differential equation solver D02BBF. This method was chosen 
in order to ascertain the effects of initial conditions on the resulting steady solutions. 
The results we present are in the form of graphs of the quantities B, and $z defined 
bv 

N 
~.i 

n--N 

cosq5, = C B, cos (nM( Y +a,))  (4.10) 
( n - y N  

(4.11) 

where B,  = BneinMan, and g, is real and positive. The x-component of the fluid 
velocity in the layer is proportional to B, cos (k, x + K X +  $,( Y ) ) .  Thus if we define 
the cell boundaries to be the surfaces where there is no flow in the x-direction then 
these boundaries occur at 

kcx+KX+q5,(Y)  = ( r i++)Z ,  (4.12) 

for integer 6, and the local wavevector of the rolls is given by 

(4.13) 

Thus B, is the local amplitude of the rolls as a function of Y ,  and 4, represents the 
shape of the roll axis. 

The numerical computations suggest that there are three stable steady solutions, 
namely, the basic roll and two others, which we label types I and 11. We infer from 
these calculations that the bifurcation diagrams corresponding to the zigzag 
instability are as sketched in figure 4. I f R  is considered to be constant, then the basic 
roll is linearly stable for small positive values of - K  and all K > 0. When K is given 
by (4.2) there is a supercritical bifurcation to the weakly nonlinear solution given 
above, which we label type I .  In figure 5 values of B, and $, are displayed for a 
steady solution with ( R , K )  = (10, - l), a type-I solution, which is typical of those 
found just within the unstable region. In this case we found that a truncation level 
N = 6 gives a sufficiently accurate solution. The integration may be initiated either 
by using the basic roll solution (i.e. taking BJO) = A,) together with small values of 
B, = -B-l so that the evolution can be followed in time, or by using large values of 
B, = -B-l in order to decrease the integration time. From the $, plot i t  can be seen 
that the roll axis of this solution is not straight, but exhibits a spatially periodic 
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A 

Type I1 \ 
B 

A 

FIQURE 4. Sketches of the bifurcation diagrams for the zigzs instability: (a) R .  3.3, and ( b )  
R > 3.3. Here A represents the amplitude of the basic-roll component, B,,, and B is a measure of 
the strength of the zigzag components, e.g. IBJ or lB-ll. 

deviation about the axis of the basic roll, q5z = 0. This solution has the same form as 
the weakly nonlinear solution derived earlier. 

For larger values of - K the amplitude of q5= increases so that the roll axis exhibits 
increasingly larger deviations from a straight line. At a second critical value of K (the 
first being the neutral curve) the type-I solution, for which B, = -B-,, becomes 
unstable to small perturbations of the form B, = B-l.  The subsequent evolution is 
such that the final steady solution has either B, or B-, dominating; it is this solution 
we label type 11. A typical example of this solution, for which ( R , K )  is again 
(10, - i), is shown in figure 6 where we see that the rolls are aligned away from the 
basic-roll axis in the mean. For this solution the axial deviation from straight line 
decreases as we recede from the neutral curve, which is to be expected since large 
values of - K  imply a weak basic flow. This secondary bifurcation may be either 
supercritical or subcritical depending on the precise value of R. If we fix R and vary 
K ,  then the bifurcation is subcritical when 11 > 3.3 and supercritical otherwise. 
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- 1.0 .I 
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MY/2n 

FIGURE 5. A steady solution for the zigzag instability forR = 10, K = - 1 andM given by its critical 
value. This type-I 'solution is typical for (R ,  K )  close to the neutral curve. The constant solution 
corresponds to the basic roll. 

Numerically we have found that the degree of subcriticality can be such that it is 
possible to obtain type-I1 solutions well within the linearly stable region and even for 
positive values of K .  The plan views of both types I and I1 solutions are sketched in 
figure 7 together with the basic roll for comparison. 

5. The sideband instability for the sinuous configuration 
For the BQnard problem it is well known (Newel1 & Whitehead 1969) that a roll 

may become unstable to two-dimensional disturbances ; we now investigate how the 
presence of boundary imperfections modify this instability in the case of Lapwood 
convection. As mentioned earlier, such an instability may arise if the layer is finite 
in the y-direction, of width W ,  say. In particular, it is necessary that (i) W = o(&), 
so that the zigzag instability cannot be accommodated within the layer, and (ii) W 
is not too close to 2 n N X / k ,  for any integer N X ,  so that transverse rolls with 
wavenumber k,  + O(& cannot fit into the layer. Mathematically, these conditions can 
be made more precise by setting W = 2nN*/k,+6,  where the integer N X  = O ( E - ~ )  
and 6 = O(sb) ,  to give the requirements, 0 < a < 8 and 0 < b < +-a. As noted earlier 
the present analysis is also important in studying the stability of convection in a long 
Hele-Shaw cell. 

The appropriate amplitude equation is again given by (3.1) and the linear stability 
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FIQURE 6. A steady solution for the zigzag instability for R = 10, K = - 1 andM given by its critical 
value. This type-I1 solution is typical for ( R ,  K )  far from the neutral curve. The constant solution 
corresponds to the basic roll. 

FIQURE 7. A sketch of the cellular structures corresponding to solutions of (a) type I, 
(6) type 11. The dashed lines represent the alignment of the basic roll. 

Convection in a saturated porous layer 
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of the basic flow is considered by substituting A = (A,+~)exp(iKX) in (3.1) and 
linearizing with respect to 7. On setting 

7 = (7, eiLX + e-iL") eAT (5.1) 

it is found that the growth rate, A, is maximized when L2 = K 2  - k: At/64K2. The 
marginal stability curve, found by setting h = 0, is labelled (c) in figure 2. We note 
that it lies entirely within the unstable region of the cross-roll instability and is 
therefore less important in a fully three-dimensional context. In the present case, the 
most unstable mode has 7, = cif-,, where c is a real function of R,, and where 
R, = R,(K) lies on the sideband neutral curve. 

To consider the nature of the bifurcation corresponding to points on the neutral 
curve, we proceed as for the zigzag instability by performing a weakly nonlinear 
analysis using (4.3) with R, replaced by R,, and A ,  = 47*) (ceiLX+e-'LX ) where A 
is complex, in general. Again, at O($),  a solution exists only if 

dA 
- = R2p1 A +p2 A2& 
dr* 

where ,ul and p2 are real constants. It is found that R2p1 is positive to the right of 
the neutral curve for K > 0, which is in agreement with the linear theory. The 
bifurcation is subcritical when p2 > 0, which holds when R, > 7.30875. 

The nonlinear evolution of the sideband disturbances may be followed by again 
using a Galerkin method. Expanding A in the form 

N 
A = 

fl--N 
(5.3) 

where L is not necessarily equal to the maximizing value given above, yields the 
equations 

(5.4) 
d - (B,) = [R-4(nL+K)2]Bn-E~C,+2k,S, , ,  
dr 

n = - N , . . . , N ,  

where C, is given by (4.8). 
The results are presented in terms of B, and $,, where 

N 2 N  

I; B,cos(nL(X+a,)) + C i%,sin(nL(X+a,)) )31 , B, = [( (5.5) 
n--N n--N 

gfl cos (nL(X + a,)) 

sin #, = C sin (nL(X + a,)) B,, (5.7) LN )I 
where B, is defined as in $4. The roll stream function (cf. Rees & Riley 1986), ~, is 
given by 

so that B, measures the local roll amplitude and $, the local phase of the rolls relative 
to the boundary forcing. The local roll wavenumber is now given by 

II. = 2k,B,(X) cos ( k , z + K X + # , ( X ) ) ,  (5.8) 

(5.9) 
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FIGURE 8. Steady solutions for the sideband instability for R = 20, K = L = 0.5. The constant 
solution is the (linearly stable) basic roll. 

(4 

FIGURE 9. A sketch of typical streamlines for (a,) a sideband dominated solution, and, for 
comparison, ( b )  the basic roll. The phase of the basic roll is such that there is no horizontal flow a t  
stations where the boundary temperatures take maximum or minimum values. 

The findings above regarding the nature of the bifurcation at  the marginal curve 
have been confirmed using the numerical scheme. In figure 8, B, and q5, are shown 
for ( R ,  K )  = (20,0.5) with L = 0.5 - a parameter case where the basic roll is linearly 
stable. This solution was obtained by introducing a large sideband perturbation to 
the basic-roll solution, and using a truncation level N = 9. Over a length of 2nlL in 
the X-direction this solution has two fewer cells than the basic roll ; this is seen clearly 
in figure 9 where typical streamlines for a fully evolved sideband disturbance are 
displayed. In figures 8 and 9 it is seen that a t  X = K/L, the roll phase is 4, = -K, 
which corresponds to flow in a direction opposing the buoyancy forces. Consequently 
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FIGURE 10. The effect of different values of K and L on the steady solutions for the sideband 
instability: R = 20 and K = L = 0.5, 0.15, 1.0, and 2.0. 

there is a local decrease in the roll amplitude. In figure 10 we display various 
solutions, again for R = 20, but with K = L = 0.5, 0.75, 1.0 and 2.0. Here we see that 
as K increases the computed solution tends towards a solution with a constant 
wavenumber. This is a consequence of the decreasing strength of the basic flow, which 
has a diminishing effect on the final solution as K becomes large. The bifurcation 
diagrams corresponding to our analytical and numerical results for the sideband 
instability were found to be qualitatively the same as for the cross-roll instability, 
shown in figure 3. The axis labelled B in figure 3 is to be interpreted here as some 
measure of the magnitude of the sideband components, such as IB-ll if K > 0, or 
(B,( for K -= 0. 

6. The sideband instability for the varicose configuration 
Finally, we turn our attention to the two-dimensional stability of rolls in a layer 

with near-resonant varicose thermal forcing. As mentioned in the introduction this 
is of relevance when considering a shallow Hele-Shaw cell or a porous layer which is 
narrow in the y-direction (i.e. the layer is sufficiently restricted that the rectangular 
cells described in Rees & Riley (1988) cannot fit into the layer). 

The governing amplitude equation (2.18) may be reduced to a canonical form by 
introducing the substitutions 
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FIGURE 11. Marginal stability curves for the layer with varicose heating: (a) 
mode, ( b )  onset of multiple-roll flow (instability of zero solution), (c) instability 
sideband disturbances. 

onset of the single 
of the single roll to 

which, on omitting the superscripts, yield 

A, = RA+Ke2iKX +4Axx-A2A-. (6.2) 

It is interesting to contrast the natures of the sinuous and varicose thermal forcing 
by comparing the respective amplitude equations (3.1) and (6.2). In the former case 
an inhomogeneous spatially varying term appears, thus causing all possible solutions 
to contain a component proportional to eiKX. In the latter case the forcing manifests 
itself as a variable coefficient so that it is possible to have not only the zero solution 
but also solutions without a component proportional to eiKX. 

The stability of the A = 0 solution may now be determined. Consider first the 
stability with respect to disturbances with spatial form eiKX. On setting A = 
a(7)eiKX in (6.2) and linearizing with respect to ct we obtain 

a, = (R-4K2)a+ti, (6.3) 
from which we deduce that there are two normal modes for which a is either real or 
imaginary. Thus the critical values of R, R,, and RVi above which these respective 
modes grow are given by 

R,, = 4K2- 1 ,  R,, = 4K2+ 1. (6.4a, b)  

These respective modes correspond to the type I and I1 modes described in Rees & 
Riley (1986). It is an easy matter to show that the type-I1 solution is unstable to 
phase disturbances. The marginal stability curve ( 6 . 4 ~ )  is plotted in figure 1 1  and 
labelled (a ) .  

As pointed out by Newel1 & Whitehead (1969) a mode consisting of a pair of rolls 
may also bifurcate from the trivial solution - the analysis follows as in 95. Thus we 

(6.5) 
set A = (a, eiLX + a2 ,-iLX) eiKX+17 
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in (6.2) and linearize with respect to  a, and a2. This disturbance has growth rate 

h = R-4(K2 + L2)  + (64K2L2 + l):, (6.6) 

from which we deduce that the maximum growth rate occurs when L = L,,, 

(6.7) 
where 

and is given by A,,, = R,+ l/16K2. (6.8) 

R = - l/16K2, (6.9) 

Lto = (K4-J- 64)"K2, 

Hence the critical curve for these disturbances is given by 

which is subject to K2 > Q (from (6.7)), and is plotted in figure 11 and labelled (b ) .  For 
values of K2 less than Q, h is maximized when L = 0 and the above single-mode 
analysis becomes appropriate. It is pertinent to note that a,/., + 0 and I,,, + K as 
K .+ GO, and therefore, in this case, the most dangerous mode consists of a single roll 
whose wavenumber k,+ (K-L) c+ k ,  as K + co. In  this way the results of Rees & 
Riley (1989) are recovered for the onset of finite-amplitude convection in the form of 
longitudinal rolls with wavenumber k,  where the varicose thermal forcing has 
wavenumber k, and k ,  + k,. 

We now consider the stability of the finite-amplitude single-roll solution, 
A = ( R +  1 -4K2)teiKX, to sideband disturbances. Let 

A = [ ( R +  1 -4K2)i+~]eiKX, (6.10) 

in (6.2) and linearize with respect to  7. The maximum growth rate for the 
disturbances occurs when L = L,,, where 

LEI = K2-(R-4K2)2/64X2 (6.11) 
and is given by 

A,,, = (R-4K2)'/l6K2 - ( R - 4 K 2 )  + (a2 - 2). (6.12) 

In general A,, + L,, and therefore the wavenumber of the most dangerous sideband 
disturbance depends on the initial flow. The critical curve is easily determined to 
be 

R = 12K2-4 4 2 K ,  (6.13) 

which is shown in figure 11 and labelled (c). The qualitative features of figure 11 also 
appear in Wynne (1987). It is of interest to note that the marginal stability curves 
(6.4a), (6.9) and (6.13) are not only coincident a t  (R, K) = (-f, & 1/2/8), but have 
identical tangents at that point. A weakly nonlinear analysis of the bifurcation at  
points on the curve given by (6.13) reveals that it is supercritical as R increases. 

Once more we follow the evolution of the sideband instability using the Galerkin 
scheme derived earlier. For the remainder of this section the notation of $5 will be 
employed. For this configuration the amplitudes of the various roll components B, 
(cf. (5.3)) satisfy the following set of equations : 

d -(I?,) = [R-4(nL+K)2]B,+B-,-4k:C, ,  n = - N ,  ..., N .  (6.14) 
dr  

The results derived earlier have been confirmed using the numerical scheme. It 
appears that there are two types of solution to (6.14) that  are stable: the first 
corresponds to  the finite-amplitude single-mode solution A = (R + 1 - 4K2)aeiKX, and 
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FIGWBE 13. A sketch of the cellular structures corresponding to (a)  a multiple-roll flow, ( b )  the 
single roll. The phase of the single roll is such that the horizontal velocity is zero at stations where 
the temperature difference across the layer takes its mean value. 

the second is a superposition of modes with wavenumbers k,  + (K + (2n + 1) L )  E .  This 
latter solution does not contain a mode with the forcing wavenumber k, = k, +eK. 
We show typical examples of this solution in figure 12 where B, and 4, are plotted 
for the cases R = 10, K = 0.4, 0.5, and 1.0, L = L,,(K) and N = 9. It is evident from 
figure 12 that when K is small the local phase of the flow is close to nn for a large part 
of the interval X = 0 to X = 2nL, with a relatively small region where the phase 
undergoes a transition from nx to (n- 1) n. This transition is accompanied by a local 
reduction in the amplitude B,. This is illustrated in figure 13 where we show typical 
streamlines for such a solution. For larger values of K the slope of the phase plot 
tends more towards a constant value, indicating that one mode (i.e. the one with 
wavenumber k,  + ( K -  L) E )  dominates all the others. 

FIQURE 12. Steady solutions for the sideband instability with varicose heating for R = 10, 
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IB~,I 
FIGURE 14. Sketches of the bifurcation diagrams for the sideband instability for varicose 
heating for (a )  small positive K ,  ( b )  large positive K .  For negative K replace JB-,I by lBll. 

In figure 14 we show sketches of the bifurcation diagrams corresponding to the 
stable solutions which have been determined numerically, and the unstable solutions 
whose presence we have inferred from elementary bifurcation theory. For K 2  < the 
first mode to bifurcate from the trivial solution is the single-roll solution, and 
corresponds to L = 0. At higher values of R multiple-mode solutions ( L  =k 0) 
bifurcate from the zero solution, but are initially unstable. At still larger values of R 
stable multiple-mode solutions exist, and therefore we infer the presence of an 
unstable mixed single- and multiple-mode solution as shown in figure 14(a). For 
larger values of K = the multiple-mode solution occurs first as R is increased, as seen 
in figure 14(b). As R is increased further the single-mode solution bifurcates 
supercritically from the zero solution, but this is unstable until a secondary 
bifurcation to an unstable multiple mode. A difficulty arises a t  this point since, if the 
flow corresponded to a stable point on the single-mode branch, and R were reduced 
past the secondary bifurcation point, then the flow would evolve to a multiple-mode 
state different from that obtained by increasing R to the same value. This is a 
consequence of the fact that the critical value of the sideband wavenumber, L, differs 
in different circumstances. I n  general it would seem likely that the flow obtained at 
particular values of R and K will depend on the past history. 

7. Conclusions 
We have studied the stability of rolls and the evolution of instabilities in a 

saturated porous layer when the temperatures of both horizontal boundaries vary 
periodically in one direction about their respective mean values. Attention has been 
focused on the effect of small-amplitude modulations, with wavenumber close to 
k,, on convective rolls for Rayleigh numbers near Ra,. 

The marginal curves for cross-roll, zigzag and sideband instabilities for a sinuous 
modulation have been calculated and it has been shown that the region of linear 
stability of the basic two-dimensional flow is enlarged by the presence of the 
modulation. 

When the basic roll in the sinuously heated layer is unstable to the zigzag 
instability, the roll axis deforms and exhibits spatially periodic deviations about its 
original direction; this solution occurs when (Ra, k,) is close to the neutral curve. 
Further away from the curve this solution becomes unstable and evolves to a roll 
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whose axis has spatially periodic deviations about a direction inclined at  a small 
angle to the basic roll. When the basic roll is unstable to the sideband instability the 
ultimate steady flow (in the absence of other types of disturbance) is a roll with a 
spatially periodic amplitude and phase. Thus the zigzag and sideband instabilities 
give rise to a number of novel roll patterns, which, as far as we know, have not yet 
been observed in experiments. 

We have concentrated on the effects of each instability in isolation but, in general, 
all three could exist at any one time. Although further work needs to be done on this 
aspect, we believe that the fully evolved solutions presented here are the only 
possible solutions in an unbounded layer. It is also likely that some solutions 
assumed to be stable here are unstable, e.g. the ‘stable’ solutions near the limit point 
in figure 4 ( b )  may be unstable to sideband or cross-roll disturbances. 

For heating with a varicose modulation, we considered two-dimensional flows and 
analysed the sideband instability only. In  general, a more important three- 
dimensional instability does exist, but we assumed that conditions were such that it 
could be ignored. It was found that, owing to the modulations, the onset of rolls 
occurs at a lower Rayleigh number and the destabilization due to the sideband 
instability is delayed. When there is a large detuning of the modulation wavenumber 
away from k, (but still within an O(s)  range) the first mode to appear as the Rayleigh 
number increases consists of a pair of rolls. The ultimate steady flow that arises from 
the sideband instability is again a roll with a spatially periodic amplitude and phase. 
However the wavenumber of the most dangerous sideband disturbance depends on 
the past history of the flow unlike the case of a sinuously heated layer. 

We have concentrated on one-dimensional imperfections and it is natural to 
question what would the effects be of two or more modes with non-parallel 
wavevectors and different wavenumbers. Although this is outside the scope of this 
paper much may be deduced about the flow patterns with little analysis. A good 
example is the case of two modes with perpendicular wavevectors and equal 
wavenumbers close to k,. In  this case the flow occurring subcritically consists of 
square cells which persist until they become unstable at Ra = Ra, + O($) to form a 
pair of rolls with unequal amplitudes. As (Ra-Ra,)/$ increases one of the rolls 
decays to zero recovering the result of the perfect problem that rolls are the only 
stable mode. The precise quantitative results require a similar analysis to that 
presented in this paper. 

One of us (D.A.S.R.) wishes to thank the S.E.R.C. for support under Research 
Grant GR/D/46601. The authors wish to thank the referees for constructive 
criticism on the preparation of this paper. 
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